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Abstract

With its focus on phenotypes, inheritance, and natural selection, evolutionary quantita-
tive genetics constitutes a bridge between the genetic architecture of traits and evolutionary
dynamics. This field has produced a vast theoretical literature with numerous empirical
studies supporting the basic theoretical principles of quantitative genetics. At minimum,
quantitative genetic studies require data concerning phenotype, fitness, and kin relations for
individuals in a population. These data are rarely available to primatologists who study
primate populations in the wild. Increasingly, however, evolutionary quantitative genetic
studies have been conducted on wild and free-ranging primates, and several long-term stud-
ies of wild primates are producing the necessary data to conduct quantitative genetic studies.
Our goal in this review is to provide a thorough and (hopefully) gentle introduction to quan-
titative genetic theory, with particular emphasis on multivariate selection theory. We review
the basic steps in deriving a multivariate equation for evolutionary change and we then show
how this basic equation can be modified in order to study sexual selection, life history the-
ory, evolutionary constraints, allometry, ecological morphology and social behavior. We also
discuss the epistemological role of quantitative genetic models as well as basic concepts such
as fitness, selection, and adaptation as they pertain to quantitative genetic studies. Finally,
we review some recent quantitative genetic studies of wild and free-ranging primates.
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1 Introduction

Adaptation, no doubt, is a cornerstone of biological anthropology in general and of primatol-
ogy in particular. A lot of research seeks to generate or test hypotheses about the adaptive
basis of a particular trait or behavior in primate populations. Whether one is studying
agonism among adult male rhesus macaques or the origins of bipedalism, such topics are
almost always studied with reference to the fitness consequences of a particular behavioral
strategy or anatomical configuration. For the most part, insights into the adaptive evolu-
tion of primate behaviors and anatomical traits come from three approaches: 1) long-term
ecological investigations of one or a few primate social groups in the wild; 2) measuring
osteological specimens in a museum in order to understand functional aspects of anatomical
form; or, 3) developing interspecific comparisons of primate traits and a putative selective
pressure—the comparative method. A bit of reflection about how these three approaches
are carried out, suggests that they operate on different levels of the biological hierarchy and
draw from different sample sizes. Primatologists in the field often follow focal groups or focal
animals resulting in numerous datapoints collected on about 5-25 animals. Anatomists in the
museum, on the other hand, often take homologous measurements on anatomical landmarks
from various species resulting in a sample size that is often dependent on the number of spec-
imens available in the museum collections. Finally, comparative studies often use an average
value of a particular trait and map this trait against a putative selective pressure across a
phylogeny; here, the sample size depends on which species are included in the analysis. It is
interesting that these approaches all focus on adaptation, but do not directly study the unit
of evolution in which adaptations are forged—the population. Given that the population is
the unit of evolution it would be illuminating to gather data on variation among individuals
in fitness and phenotype as well as some information on the fidelity through which traits
and behaviors are transmitted across generations. If one could collect such information,
then one could gain insight into the processes by which natural selection crafts adaptations
across generations. That is, one could estimate the strength of selection acting on traits
or behaviors as well as the heritability of these traits or behaviors. Such an endeavor is
easier said than done. Primates, as an order, tend to live longer and reproduce later in life
than other orders of mammals. Such a delayed life history schedule makes collecting data
on variation in phenotypes and fitness rather difficult. In order to obtain sufficient data to
estimate things like selection coefficients and trait heritabilities long-term data are required
from animals with known fates and kinship.

In this paper, we outline widely used techniques that allow one to quantify the action of
natural and sexual selection and to estimate the heritable portion of the phenotype. These
techniques have been widely applied in experimental and/or wild populations of insects, fish,
birds, and some mammal species. Only rarely, however, are they applied to wild or free-
ranging primate populations. The data required to achieve these goals entails considerable
effort to collect, but at present, there are numerous long-term studies that have collected data
on genetic relationships, reproduction, and phenotypic variation. Many of these long-term
studies have recently been discussed by Strier et al., [90] [91] in the context of a comparative
primate life history database. Thus with the continuing accrual of data from wild and free-
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ranging primate populations and new analyses from long-term captive populations, we feel
that the techniques and methods we outline below will become more prevalent in primatology.
In short, numerous studies are beginning to incorporate genetics and live-capturing into
their research program; the methods outlined below will hopefully guide these studies in the
analysis of these new datasets.

Our goal is to outline the body of theory for study of adaptive phenotypic evolution from
a quantitative genetic perspective. By “quantitative genetic”, we mean that the traits un-
der study are continuous and quantitatively coded by many loci. The models we discuss
are sometimes called “phenotypic selection models,” since they focus on how phenotypes
change under selection in a multi-trait (i.e., multivariate) context. Usually, the only genetic
information one needs in such models is information on the faithfulness through which traits
are transmitted across generations. As such, the power of these methods is that they pro-
vide insight into the processes of adaptive evolution while accounting for the fact that traits
within an organism are sometimes integrated and must be analyzed as a unit. In this paper
we review the basic components of multivariate selection theory. Though we rarely discuss
primates per se, our goal is to provide an accessible introduction to primatologists, with
the hope that these techniques will be adopted by them. Those who already possess some
knowledge of these techniques will find our review excessively wordy. In short, we would
rather insult the intelligence of the expert than alienate the non-initiate.

2 Multivariate phenotypic selection models

To begin, we will consider selection on a single trait. In what follows, we use the term “trait”
to refer to some aspect of the phenotype (e.g., height, probability of living to age x, body
mass) and “trait value” to the corresponding value that the phenotypic trait can take in an
individual (e.g., 166mm, 0.95, 68kg). Table 1 gives the defintions of the terms used in the
equations. Consider a trait such as height. Let’s denote height as trait z1. Selection acts
on individuals and as a consequence, the population evolves; in this case, we want to track
phenotypic change at the population-level. Specifically, we want to understand how the
mean of z1 changes from generation to generation due to selection. We will denote the mean
change in trait z1 as ∆z̄1. The information we would need to understand this is the following:
which trait values are being favored by selection (Is it tall people...short people, etc?) and
how much of a parent’s height is passed on to offspring?—or put another way, how heritable
is height? Imagine a hypothetical population who’s average height is 5′8′′. Then, imagine
we had knowledge that all people of height 6 feet or greater in this population were allowed
to randomly breed with each other. Further, say we had some information that height was
heritable. Now, armed with this knowledge, imagine we examined the distribution of height
of the offspring produced by the tall parents (i.e., those selected to breed) and we found it
to be, on average 5′11′′. In thinking about this information, we could conclude something
like,
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Table 1: Description of mathematical terms used in this paper

Variables and terms Description
z Any phenotypic trait

(subscripts will be used to distinguish different traits)
z A vector of traits z, e.g., z1, z2, ...zn
∆z̄ The average change in trait z between generations
∆ z̄ The average change in vector of traits zn between generations
S The selection differential
VA Additive genetic variance
VP Phenotypic variance
α Breeding value
h2 Narrow sense heritability
VP (1, 1) The phenotypic variance in trait 1
CP (1, 2) The phenotypic covariance between traits 1 and 2
VA(1, 1) The additive genetic variance in trait 1
CA(1, 2) The additive genetic covariance between traits 1 and 2
VE(1, 1) The environmental variance in trait 1
CE(1, 2) The environmental covariance between traits 1 and 2
ρP The phenotypic correlation between traits
ρG The additive genetic correlation between traits
β The directional selection gradient
γi,i The nonlinear selection gradient for trait i
γi,j The correlational selection gradient among traits i, j
P The phenotypic (co)variance matrix
G The genetic (co)variance matrix
A The projection matrix
β Vector of selection gradients
s Vector of selection differentials
λ A measure of fitness measured as

the rate of population growth
Ro A measure of fitness measured as

per-generation rate of offspring production
θ A vector of optimum trait values
ω A matix of stabilizing selection coefficients
B Additive genetic covariance matrix

between males and females
∇λ Vector of directional selection coefficients

for life history traits
∂λ
∂zk

Sensitivity, or directional selection

coefficient for a life history trait
Ψ Matrix of interaction coefficients in

social selection models
Cαp Matix of correlation coefficients between

breeding value and phenotype
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The change in average height due to selection across generations is equal to the phenotypic
advantage of those people being selected for multiplied by the degree to which height is heri-
table.

Thus if tall people were being selected for (i.e., allowed to out-reproduce short people) and,
on average, tall parents had tall children (i.e., height is heritable), then we would know the
change in average height across generations is due to selection for tall people. To represent
our word equation mathematically, we could write

∆z̄1 = Sh2 (1)

S is called the selection differential and represents the difference in average height between
the tall people and the total population. Say, the average height of the tall people was 6′2′′.
Thus S is simply

S = 6′2′′ − 5′8′′

The term h2 in equation 1 refers to the heritability. Formally, it is the ratio of the additive
genetic variance (VA) to the phenotypic variance (VP ) (h2 = VA/VP ). Heritability is a
number between 0 and 1; when heritability is equal to 1, then all of the variation in trait
values for a particular trait is due to additive genetic variation. Heritability determines the
degree to which offspring resemble their parents based on additive genetic effects, because
it includes the term VA. Additive genetic variance is the genetic variation in the population
that produces the genetic-based similarity between parent and offspring phenotypes (we will
expand on this concept in Section 3). If we assume the heritability of height is 0.5, then
we can calculate the change in average height using equation 1. We know that S = 6′′,
thus multiplying this number by the heritability yields 3 inches. In this regard, the next
generation of offspring will be three inches taller, on average, due to selection for tall parents
(5′8′′ + 3′′ = 5′11′′).

Substituting VA/VP for h2 and rearranging, we can rewrite equation 1 as

∆z̄1 = S
VA
VP

(equivalently) ∆z̄1 = VA
1

VP
S (2)

The reason we rewrote equation 1 as equation 2 was that this equation will have some
correspondence with equations we develop below. In equation 2, the mean change in a trait
value is proportional to the selection differential (S) and additive genetic variance (VA), and
inversely proportional to the phenotypic variation. Equation 2 makes it clear that VA is what
matters when calculating the response to selection. If VA were zero, then the entire right
side of equation 2 would be zero and there would be no response to selection. Thus we can
conclude that in order to see some change in average phenotype across generations, we need
to have some amount of genetic variation that produces a correspondence between offspring
and parents. Also note that if we scale S by phenotypic standard deviation (

√
VP ), we get

what is known as the selection intensity, usually noted as i (i = S/
√
VP ).

The selection differential is defined as the difference in average trait values between those
allowed to breed and the total population. Implicitly, what we were doing was stating that
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the selection differential involves a non-zero covariance between fitness and phenotype. That
is, we were stating that all folks whose height is equal to or greater than 6′ were allowed
to breed (they have a high fitness) whereas those shorter folks have lower fitness because
they are not allowed to breed. The selection differential in this case represents truncation
selection since there is some cut-off point that determines who breeds and who doesn’t.
Obviously, in nature, selection rarely works with such fastidiousness. More often, we would
likely see a distribution of offspring production that is associated with a distribution of trait
values. In such cases, the selection differential is calculated in a slightly different way than
the case for truncation selection; it is no longer the difference in average trait values among
those selected and the total population; rather, S is simply the relationship, itself, between
relative fitness and phenotype (prior to reproduction). That is, in nature, S is measured as
the covariance between fitness (w) and phenotype. More formally then,

S = (Cov(w, zi)) (3)

Any association between a particular trait and fitness can be measured using equation 3.
Here, fitness is scaled by mean fitness (w = W/W̄ ). The selection differential, as defined
in equation 3, measures the total selection on a trait even if the trait is phenotypically
correlated with another trait.

What if selection acts on multiple traits? How do the traits change across generations in
such cases? To model this, we need to introduce some new traits and terms. In addition to
trait z1, let’s also consider trait z2. We can model selection acting on these two traits in the
same way that we modeled it for trait z1. However, the new thing that we need to account
for is the fact that the traits may be correlated (i.e., they covary). For example, if trait z2

is “width” (say, a measurement across the hips), we need to account for the fact that height
(z1) and width (z2) phenotypically covary. (We denote the phenotypic covariation between
traits 1 and 2 as CP (1, 2); following from this, we note that any trait which covaries with
itself is simply the variance in that trait, for example, the variance in trait 1 is denoted
VP (1, 1)). Imagine that the two traits are indeed positively correlated, but that selection
is acting only on height (how we would know is this discussed below, p. 10). In this case,
we expect that selection is acting to make people taller, but that as a consequence of the
positive phenotypic covariation, there is also selection for increased width. If we calculated
the selection differential, S, for height (i.e., S1) we would find that it is positive (since tall
people have high fitness) but similarly, if we calculated S for width (i.e., S2), we would
also find it to be positive. However, the reason S2 is positive it due to the fact that width
phenotypically covaries with height, which is under selection. Put another way, selection for
increased height is due to direct selection acting on height (taking into account the amount
of phenotypic variation in height) plus the indirect selection acting on width (taking into
account the phenotypic covariation between height and width). Recall the S measures total
selection (direct selection plus indirect selection due to phenotypic covariation) acting on a
trait. Thus we can write the selection differential for height (S1) as

S1 = direct selection on z1 × VP (1, 1) + indirect selection on z2 × CP (1, 2) (4)

In a similar fashion we can write out S2 as

S2 = direct selection on z2 × VP (2, 2) + indirect selection on z1 × CP (2, 1) (5)
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Now let’s introduce some new notation. Let’s make βi denote direct selection on trait i; the
β coefficients are known as selection gradients. Thus we can write equations 4 and 5 as,

S1 = β1VP (1, 1) + β2CP (1, 2) (6)

and
S2 = β2VP (2, 2) + β1CP (2, 1) (7)

Now, note that β = 1
VP
S. That is, direct selection on a trait is equal to the reciprocal (or

inverse) of phenotypic variation multiplied by the selection differential. When we extend this
notion to two or more traits, we get a conceptually similar, but not mathematically identical,
relationship to β = 1

VP
S. In the two trait case, equations 6 and 7 constitute a system of

equations and thus solving for the β terms must be done simultaneously. Intuitively, however,
we know that when dealing with multiple traits it is necessary to account for phenotypic
covariances among traits. Thus we would expect that direct selection acting on multiple
traits involves not only selection differentials acting on each trait but also takes into account
correlations among traits. For traits 1 and 2, we have

(
β1

β2

)
=

(
VP (1, 1) CP (1, 2)
CP (2, 1) VP (2, 2)

)−1(
S1

S2

)
(8)

In equation 8 we have expressed the direct selection coefficients (the β coefficients) and the
selection differentials (S) as vectors (columns of numbers) and associations among traits
is captured by a matrix (a box of numbers) that contains information on the phenotypic
associations. Formally, the “−1” denotes the inverse of this matrix. Hence the matrix in
equation 8 is the inverse of the phenotypic variance-covariance matrix. In more compact
notation, equation 8 can be represented as

β = P−1s (9)

where boldface terms denote vectors or matrices. The P−1 term represents the inverse of the
phenotypic covariance matrix, but this is not the same thing as a matrix of the reciprocals of
variance/covariance of each trait. Written out, equation 9 is the following (which emphasizes
that the entries in the P−1matrix 6= 1/VP )

(
β1

β2

)
=

1

VP (1, 1)VP (2, 2)− CP (1, 2)CP (2, 1)

(
VP (2, 2) −CP (1, 2)
−CP (2, 1) VP (1, 1)

)(
S1

S2

)
(10)

If we had three traits under study then equation 8 would be expanded as such β1

β2

β3

 =

 VP (1, 1) CP (1, 2) CP (1, 3)
CP (2, 1) VP (2, 2) CP (2, 3)
CP (3, 1) CP (3, 2) VP (3, 3)

−1  S1

S2

S3

 (11)
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Equation 11 represents the selection differentials, selection gradients and phenotypic vari-
ances/covariances in terms of vectors and matrices for three traits. Note that we can write
out the direct action of selection on trait 1 for the three trait case from equation 11 as follows

β1 = VP11S1 + CP12S2 + CP13S3 (12)

In this case, terms such as VP11 and CP12 represent the row by column positions within the
P−1 matrix (e.g., VP11 is in the first row and first column of the P−1 matrix and this value is
multiplied by S1). And as before, equation 11 can also be written in a much more convenient
format; thus

β = P−1s (13)

Equation 13 (or 11) above provides a description of how to parse selection into components of
direct and total selection. The right side of equation 13 is similar—but not homologous—to
the 1

VP
S term in equation 2 (since the inverse of a matrix is not a simple matter of taking

the reciprocal of each entry). The β coefficients, or selection gradients, are a key component
in the theory of multivariate phenotypic selection models—they measure the direct selection
acting on traits while controlling for the effects of indirect selection. They help us identify
the true target of selection. In our example above concerning height and width, both of
the selection differentials, S1 and S2, would provide evidence for selection on these traits.
However, only by measuring the selection gradients would we know that selection is targeting
height and that the selection on width is indirect (i.e., β1 > 0, β2 ≈ 0). Armed with the
knowledge that selection is targeting height, not width, we could go out and look for the
ecological or social reason as to why there are fitness differences with respect to height. In
short, the β coefficients provide a powerful way to quantify the direct action of selection on
traits when studying multiple traits.

So far, we have discussed ways to disentangle how selection acts on multiple traits that
phenotypically covary. However, what we would like to know is how multiple traits respond
to selection across generations. Thus we seek an analogous term for VA in equation 2.
Since we are considering multiple traits, we want to focus on trait covariances as well as
variances. We do this using an additive genetic variance-covariance matrix for the traits
under consideration. For traits z1, z2, and z3, we can represent their additive genetic variation
(VA(i, i)) and covariation (CA(i, j)) as

G =

 VA(1, 1) CA(1, 2) CA(1, 3)
CA(2, 1) VA(2, 2) CA(2, 3)
CA(3, 1) CA(3, 2) VA(3, 3)

 (14)

This matrix is known as the G matrix. It is another key component of multivariate selection
theory. The G matrix tells us the degree to which traits in offspring will resemble the traits
in their parents, while also noting that some traits may be genetically correlated. That
is, traits that have additive genetic covariation will respond jointly to selection acting on
one trait. Common mechanistic explanations for genetic covariation among traits is due to
pleiotropy (where one genetic locus controls two or more different traits) or linkage dise-
quilibrium (where two different alleles controlling two different traits traits are co-inherited
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more often then expected by chance, thus the two traits tend to respond to selection as a
unit rather than independently). In general, pleiotropy is thought to be more ubiquitous
than linkage in maintaining genetic correlations, since recombination will generally break
down correlations due to linkage disequilibrium. However, linkage disequilibrium is impor-
tant in many models of sexual selection; further, genetic drift, non-random mating, as well
as selection can maintain linkage disequilibrium in populations. Informative discussions of
the evolutionary implications of linkage disequilibrium are found in Gillespie [46] and Rice
[80]. One important note about the G matrix is that it assumes that all traits potentially
covary but it doesn’t account for the fact that some covariances may be more important than
others, or that some covariances may not exist at all. Path analysis is a technique that allows
one to test for hierarchical or complex covariance structure among traits. To develop path
analysis models, one can draw from ecological, physiological, or biomechanical principles to
specify the covariance among traits. Rice [80] gives a short but clear description of path
analysis for phenotypic selection models.

The G matrix is analogous to the VA term in equation 2, and since we know that β is
analogous to the S 1

VP
term, we can write the response to selection acting on three (i.e.,

multiple) traits as ∆z̄1

∆z̄2

∆z̄3

 =

 VA(1, 1) CA(1, 2) CA(1, 3)
CA(2, 1) VA(2, 2) CA(2, 3)
CA(3, 1) CA(3, 2) VA(3, 3)

 β1

β2

β3

 (15)

As before, we can use matrix notation to represent equation 15 more compactly. Thus,

∆z̄ = Gβ (16)

and noting equation 13 above, this equation can also be written out as

∆z̄ = GP−1s (17)

Equation 16 (or 15 or 17) is one of most famous and notorious equations in evolutionary
genetics. It was derived by Lande in 1979, although previous researchers had also derived it
in somewhat different form [95]. It allows one to study how the mean value of multiple traits
respond to selection across generations as a result of direct selection on each trait (section
5 lists the assumption that go into this equation). Analogous equations can be derived for
stabilizing and disruptive selection [60]. We don’t explicate these latter equations, but in
section 4 we describe and graphically depict these different types of selection. An important
property of equation 16 is that a trait can still change across generations even though it
does not experience direct selection. In the notation of equation 15, it is possible to observe
∆z̄2 > 0 but not observe β2 > 0. This occurs because trait 2 is genetically correlated with
some trait that does experience selection, for example: CA(1, 2) > 0 and β1 > 0. Though
our treatment above may seem complicated to the newcomer, it is actually quite superficial.
The motivated reader should consult Lande [57], Lande and Arnold [60], Phillips and Arnold
[73], Arnold, [6]; Brodie et al., [15], and Walsh [95] for further details and derivations.

11



3 A Model of Phenotypic Variation

In this section we want to look at a simple model of the phenotype. Through our discussion
we will introduce numerous terms that will be useful in the rest of this paper. We begin
by discussing an “intuitive” model of the phenotype (P ), namely that a phenotype is built
from genetic factors (G) and environmental factors (E). If these are the only two factors
that make up the phenotype, then we can write, P = G + E. We will assume that the
trait is continuous (e.g., height) and that many genetic loci each contribute a small amount
to height. If we were looking at the trait in a bunch of individuals, we could look at the
variation in this phenotype (VP ) and, similarly, express the phenotypic variation as a the
sum of the genetic and environmental variation:

VP = VG + VE. (18)

VE represents the amount of phenotypic variation that is due to environmental variation (for
example, when some of the variation in height in a population is determined by diet, not
genes). In equation 18 we are explicitly assuming that there is no covariance between genetic
and environmental variation; when such covariances exist equation 18 would be written as
VP = VG+VE +2CGE, where the CGE term represents the covariation between genotype and
environment. In looking at equation 18, it should be obvious that the terms “genetic” and
“environmental” actually gloss over a fair amount of complexities. Depending the question
at hand, it is possible to further break down each of these terms into something more specific.
For example, genetic factors (G) can influence a phenotype through the factors that cause
parents to resemble offspring, which are often known as additive effects, through dominance
(where one allele masks the phenotypic effect of another another allele at a locus), and
through epistasis (different genetic loci interact in a complex manner to produce a phenotypic
effect). Thus the genetic factor (G) can be broken down into additive (A), dominance (D),
and epistatic (I) factors. And as before, we are considering a population of phenotypes so
we are more interested in the variation among phenotypes (VP ) and the variation in these
factors. In this case, we can write variation in genetic factors in terms of variation due to
dominance, epistasis, and additive effects (and we assume that there is no covariation among
these terms):

VG = VA + VD + VI (19)

In a similar fashion, environmental factors can also be redefined to capture more realism.
Consider that some of the phenotypic variation in a population is due to the fact that every
individual who was born in a particular year incurred the same environmental conditions
(e.g., they all experienced drought-like conditions for their first three years of life thereby
stunting growth). In this case, some of the phenotypic variation would be due to birth-
year effects, or cohort effects (VC). Similarly, some sets of siblings in a population may all
be very healthy because their mother was a very healthy and an attentive parent. Here,
some of the variation in phenotype would be due variation in mothering ability and/or the
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placental environment provided by maternal effects (VM). In fact, it is possible to divide up
environmental (and genetic) factors into almost any conceivable component of variation that
is relevant. Finally, it is important to include a term that is often called “residual variation
(VR);” this term captures any remaining phenotypic variation that cannot be attributed to
one of the other terms in our model of phenotypic variation. Taking all the terms together,
our model of phenotypic variation is the following:

VP = VA + VD + VI + VC + VM + VR. (20)

It should be noted that this partitioning of phenotypic variation is only one possible way to
model phenotypic variation. In practice, most researchers only include those terms they are
interested in and/or those terms for which their are available data (e.g., to model dominance
effects requires pedigree data that includes both paternal and maternal links). In the same
sense that variation in phenotype (VP ) can be broken down into genetic and environmental
components, so can the covariation between two traits: CP (1, 2) = CA(1, 2)+CE(1, 2) (which
again assumes no covariation between genotypes and environment). While additive genetic
covariances (CA(1, 2)) are produced by linkage or pleiotropy, the environmental covariance
between traits (CE(1, 2)) is essentially a term that means “everything else” that is not
heritable and not modeled by a specific covariance term. In this regard, two traits can
environmentally covary due to a shared external circumstances (e.g., the traits are similar
due to experiencing a common temperature).

In order to understand patterns of inheritance, we need to find the portion of genetic variation
that causes offspring to resemble their parents—this is known as additive genetic variation
(VA). We single out VA from other genetic components because only VA is responsible for
the resemblance between parent and offspring (Futuyma, [45] pages 413-414, gives a clear
example of why VA produces a correspondence between parent and offspring); other types
of genetic variation, for example dominance variation (VD), can influence phenotypic vari-
ation but this factor is not necessarily transmitted across generations since genotypes are
not inherited from parents in diploid, sexually reproducing species (only alleles are inher-
ited). While we are considering parent-offspring covariances, two additional points are worth
mentioning here. First, it is important to remember that non-genetic factors such as ma-
ternal effects (and other shared environments) can produce similarity between parents and
offspring; second, there is a form of epistatic interaction known as “additive by additive”
epistasis, and this form of epistasis is also transmitted across generations (a good explanation
of epistasis is given in [80]). Ultimately, a lot of quantitative genetics research is concerned
with estimating the various components that make up VP , with particular attention heaped
on VA. This is because VA is a key term in the heritability (h2), which is given in equations
1 and 2 and also comprises the terms in the G matrix (equation 14). It is also a key factor
that determines part of the selection response in equation 16. Note that when we are con-
sidering the phenotype of a single individual (e.g., a parent), the additive genetic component
of the individual’s phenotype is called the “breeding value” (α). For simplicity, one can
view the breeding value as the portion of the parent’s genotype that causes their offspring’s
phenotype to deviate from the population mean (the connection to VA should be clear since
VA determines how the population mean can shift between generations). More simply, the
variance in individual breeding values is the additive genetic variance (VA).
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4 Fitness, Selection, and Adaptation

In section 2 we have talked a lot about selection without formally defining it. In order to
introduce selection more formally, we need to examine an important factor in the definition of
selection: fitness. Fitness is a central but refractory concept in evolutionary biology. This is
because researchers think about fitness in different ways depending on the question at hand.
Behavioral ecologists, demographers, and game-theoreticians all use different measures of
fitness that operate on different time-scales and contain different assumptions. While all
conceptualizations of fitness concern reproduction, there are some key differences as to how
fitness is best measured. One of the most basic distinctions among measures of fitness used
by these different researchers is that of “rate-insensitive fitness” and “rate-sensitive fitness.”
Rate-insensitive concepts of fitness measure evolutionary success on a per-generation basis,
whereas rate-sensitive concepts of fitness measure success in absolute time. A very common
rate-insensitive measure of fitness is net reproductive rate (Ro). This measure is particularly
useful to behavioral ecologists because it ties into lifetime reproductive success. That is, if one
is looking at a bunch of animals in a population, the average of their lifetime reproductive
success (LRS) is Ro. Thus estimating lifetime reproductive success in individuals allows
one to estimate the per-generation rate of offspring production. In practice, calculating
LRS takes a lot of effort and thus researchers often resort to calculating components of
LRS. Thus when one measures survival, mating success, or rate of offspring produced over
a given period, these measures constitute components of LRS. Most behavioral ecological
applications of equation 16 use LRS or some components thereof. The advantages of this
approach is that it often allows one to define the appropriate component of LRS in order
to address a particular question about the type of selection (e.g., viability, intrasexual,
fecundity, intersexual) acting on traits. For example, if one is interested in sexual selection,
it may be appropriate to use “male mating success per mating season” as the measure of
fitness. In this case, traits that covary with this fitness definition, as specified by the beta
coefficients in equation 16, measure the direct action of selection on these traits due to
male “mate-getting” ability. Likewise, defining fitness as lifetime survival (or survival over
a given period) will allow one identify the traits associated with viability selection. When
components of LRS are used to estimate selection (e.g., survival), they estimate selection
over a single episode of selection, not over a lifetime. Arnold and Wade [8] and Wade and
Kalisz [93] discuss the complications and potential solutions to this problem. Conner [35]
and Conner and Hartl [37] provide a lucid description of these methods and Brodie and
Janzen [16] provide some caveats.

LRS, as discussed above, is a simple tally of offspring produced over a lifetime, but it doesn’t
tell us when offspring are produced during a lifetime nor does it take into account whether
the population is growing or shrinking. Because selection can act strongly at some ages and
less strongly at other ages, it is better to think of fitness in terms of the entire life cycle
of the organism, from birth to death. It is necessary to do this because it matters when
individuals reproduce during their lifetime; for example, in an expanding population it pays
to reproduce earlier than your conspecifics. Given this, we need to find a fitness measure that
accounts for the timing of reproduction as well as changes in population size, since changes
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in the population growth rate can influence the strength of selection acting on different age
classes [19]. That is, we need a measure of fitness that is sensitive to these changes. A
fitness measure that satisfies these criteria is the intrinsic rate of increase of a population
(or population growth rate), often denoted as λ or r. These two measures are connected by
r = loge λ. [This measure of fitness also connects to the concept of mean fitness in population
genetics, usually denoted as w̄, in that r ≈ loge w̄, assuming that the per generation growth
rate is not too large]. The population growth rate, λ, is a demographic measure of the
eventual rate of population growth, assuming the environment does not change. We stress
eventual because it measures the rate of growth of a population in the long-term, or once the
proportion of individuals in different age classes remain stable. The population growth rate,
λ, is calculated from the average rates of survival, growth, and fertility in the population,
which are embodied in the projection matrix, At, described in section 6.3. Populations grow
in size when λ > 1, remain the same size when λ = 1, and shrink in size when λ < 1. Since λ
takes into account timing of offspring production it is often considered a superior measure of
fitness than Ro. Thus to a demographer, λ is the proper measure of fitness and Ro is only a
component of fitness. The drawback of using λ is that it is tricky to estimate on individuals,
since λ is calculated from averages—hence, the preference for Ro among behavioral ecologists.
There have been attempts to develop methods that use a rate-sensitive measure of fitness
that can be estimated from individuals [66] [38] [18].

For completeness, we discuss another measure of fitness used mostly by theoreticians who
study evolutionary dynamics. This measure of fitness pertains to invasibility (also called the
invasion exponent). Consider a population in which individuals have the phenotype “have
one offspring in year t, then die” (this is their “strategy”). Now consider a mutation that
occurs in one individual that codes for a new strategy, such as “have one offspring in year
t+ 1 and one in year t+ 2, then die”. Game theoreticians want to determine if this mutant
strategy can increase in frequency in the population in the face of the existing strategy. To
do this, they calculate the growth rate of the existing strategy (λe) and the growth rate
of the mutant strategy (λm). Fitness, then, is viewed as the ability (or lack of ability)
of a mutant strategy to invade (i.e., increase in frequency) a population predominated by
different strategy. It is measured as the difference in growth rates between the two strategies
(λe − λm). An evolutionary stable strategy is a population containing a single strategy that
cannot be invaded by a mutant strategy.

Invasibility is considered the master fitness concept, but it is rarely used in primatology. On
the other hand, both λ and Ro have been empirically estimated on wild primate populations.
In short, λ is probably a better measure of fitness than Ro but λ is difficult to operationalize
since it is a property of a population and is difficult to apply to short time intervals; LRS
is easy to measure on individuals animals, operates over short-time intervals, but does not
take into account the timing of reproduction. The two measures of fitness Ro and λ do
give equal results when λ = 1. Technical but informative discussion of fitness are found
in Charlesworth [23], Benton and Grant [9], Brommer [17], and Caswell [22]. What should
be clear about all three measures of fitness, however, is that they all tie into our notion of
fitness-as-reproductive success, independent of the time-scale or timing involved.
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We now turn to the other major factor in evolutionary change: selection. Intuitively, we
know that selection can change phenotypic variation in a population in non-random ways.
Here, we want to define selection more rigorously. The general manner in which selection can
change phenotypes is by acting on the mean, the variance, or the joint variation of a bunch
of traits in a population. Thus, if we are looking at height, selection can act to increase or
decrease the mean height (this is positive and negative directional selection, respectively),
to increase or decrease the variance in height (this is disruptive and stabilizing selection,
respectively) or to act on height along with another trait, such as weight (this is correlational
selection). Correlational selection refers to the fact that combinations of traits interact to
produce a fitness effect. Since we know that selection acts on traits with respect to the fitness
differences those traits confer, we can visually depict the action of selection by plotting the
relationship between fitness and phenotype. More formally, what we are trying to visualize
is how variation in fitness covaries with phenotypic variation (e.g., equation 3). In fact,
one can rigorously define selection as the covariance between fitness and those phenotypes
that causally influence fitness differences. We need to emphasize the causality part because
drift and/or other evolutionary forces can also produce a non-random relationship between
fitness and phenotype. Thus, measuring selection is not simply a matter of regressing fitness
on phenotype but understanding the causal relationship between particular trait values and
how they determine variation in fitness [80].

That said, selection can be estimated using linear and non-linear least-squares regression
models. In principle, any measure of fitness described above can be used; however, in prac-
tice, usually researchers regress some measure of LRS against phenotype. When regressing
fitness on phenotype, the regression coefficients tell us something about the strength (i.e.,
magnitude) and type (directional, stabilizing, etc.) of selection acting on the phenotype.
This is because regression coefficients themselves are defined as Cov(w, z)/Var(w)—if w is
fitness and z is phenotype, then it is clear that the regression coefficient captures something
about the covariance between fitness and phenotype. In fact, in equation 15, the β coef-
ficients are partial regression coefficients of fitness and phenotype [60]. In a multivariate
framework, the partial least squares regression coefficients (β) reveal how much a particular
trait “predicts” fitness when holding the other traits constant. Figure 1 shows examples of
types of selection as well as the expected response to selection, assuming that the traits under
investigation possess heritable variation. The response to selection shows what aspects of the
phenotype distribution (i.e., mean, variance, covariance) change given a particular form of
selection. Also shown is the regression equation used to estimate the coefficients describing
different types of selection. Thus it is not only possible to estimate directional selection (β)
but also stabilizing/disruptive selection (γii) and correlational selection (γij). The γii term
captures changes in the variance of trait i, whereas the γij term captures changes in the
covariance between traits i and j (Figure 1). It is important to note that selection must
act on that component of phenotypic variation that is heritable (i.e., the breeding value—
see Section 3) in order to produce an evolutionary response. It is possible that a non-zero
correlation between fitness and phenotype could occur in which selection is acting on that
portion of phenotypic variation that is determined by the environment [77]. For example,
a positive covariance between survivorship and body mass might be found in humans, but
all the variation in body mass is due environmental variation (e.g., some individuals have
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deficient diets). Mitchell-Olds and Shaw [67], among others (e.g., [64]) discuss the statistical
caveats in applying these methods to field data.

Our discussion of selection and fitness leads to another important but contentious topic
in evolutionary biology—adaptation. For the most part, adaptation is viewed from two
different angles. The first conceptualization concerns etiology, where priority is given to
either the initial selection pressures that produced the adaptation or the derived status of a
trait (produced by selection) within a clade. This definition is adopted in slightly different
forms by Gould and Vrba [48]; Coddington [34], and Harvey and Pagel [49], among others.
Usually under this definition adaptations are identified using the comparative method and/or
design principles. The second conceptualization of adaptation is that of current utility, where
priority is given to the immediate fitness benefits that the trait confers independent of its
etiology. Reeve and Sherman [79], Fisher [42], and Bock [14] have all proposed definitions
of adaptation that pertain to current utility. Usually under this definition adaptations are
identified by measuring selection or developing optimality models. With its emphasis on
immediate fitness benefits and trait values, equation 16 falls into a natural allegiance with
the current utility approach [5] [53]. That is, equation 16, is able to get at which traits might
qualify as adaptations because such traits can be identified as the direct targets of selection.
To the extent that there is a non-random and causal association between trait values and
fitness values, one can conclude that such trait qualifies as a potential adaptation. In this
regard, equation 16 provides insight into the adaptive process. It allows one to answer
questions such as: Which traits are under direct selection? Which traits evolve due to a
correlated response? Answering such questions can point to the ecological circumstances
that produce particular selection pressures and why certain trait values confer higher fitness.
Naturally, additional evidence should be brought to bear on the issue; for example one can
further test the adaptive basis of a trait using the comparative method or experimental
manipulation.

5 Model assumptions and the role of models in science

Equation 16 is a model of the evolutionary process. In this section we discuss the various
assumptions that that are built into equation 16. It is likely that most of these assumptions
are often violated in nature. Consequently, our discussion will turn to the role of models in
science. When applying equation 16 across generations, the following assumptions are made:

1. The traits under study are multivariate normal.

2. The G matrix remains constant (which implicitly suggests that allele frequencies do
not change much due to selection or drift).

3. The additive genetic and phenotypic variances change more slowly than the average
trait values.
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Figure 1: A graphic relationship between fitness variation and phenotypic variation and
equations describing this relationship (top). The response to selection is shown below and is
a product of the strength of selection + heritable variation in the trait. Regarding correla-
tional selection, the shape of the fitness surface depends on the various selection coefficients;
therefore, the fitness surface will not always be flat, as depicted here
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4. No genotype by environment interaction.

5. The environment remains constant from generation to generation.

6. No maternal/paternal/indirect effects (for example, an offspring’s phenotype is not
partly a function of its mother’s environment, or the social environment provided by
conspecifics).

7. No epistatic effects among loci contributing to the traits under study.

Ideally, if the above assumptions are not violated, then one could iterate equation 16 over
many generations and predict the trajectory of mean trait values through “phenotype space”.
In reality, it is likely the case that the environment changes, as do the terms in the G matrix.
Regarding the latter, one can conclude that the G matrix itself evolves, and this topic is an
area of active research [84, 74]. In most ecological applications of equation 16, however, the
researcher is interested in the strength of selection and/or the additive genetic variances of
the traits, not their long-term trajectories [82]. In this case, there is little need to understand
the long-term changes in the G matrix, since the β coefficients and trait heritabilities provide
insight into immediate adaptive processes.

With so many assumptions going into equation 16, one might ask what is the usefulness of
constructing such an idealized equation in the first place. To begin this discussion we make
the blatant assertion that all models make assumptions and thus all models are wrong to
some degree. Given this statement, why bother developing a “wrong” model. For starters,
models are constructed not for their truthfulness, but for their heuristic ability to depict
a certain property of a system under idealized conditions. More colloquially, models ask,
“How much of the real world can we throw away and still get a good answer?” Very often,
the answer shows what is possible when all but one or two key factors are left out. To the
extent that the model predicts and/or provides a good description of what we see out in
nature, then we have a good model. This is because our model has shown us which factors
are important given our observations. Caswell [20] makes the apt analogy: models are to
theoretical problems as experiments are to empirical problems. Good experiments do not
include several factors at once and the same is true of models. Our understanding of causality
would be clouded if we included ten different factors in a single model or experiment—how
could we isolate the key factor that “drives the system”, so to speak? It is much more
logical to ask what key factors appear to be the most important with respect to the question
at hand. From this one can develop a simplified characterization of a particular problem
in order to see how it stands up against reality (e.g., how traits change under directional
selection).

Researchers who are unfamiliar with modeling techniques might be tempted to criticize a
model for what it has excluded. It is always easy to suggest what a particular model has left
out; it is more important to understand if the excluded material affects one’s conclusions
given the question at hand. And the only way to do so is to build a model and see what
it predicts in the absence of such factor. By simplifying and isolating the key properties
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of the system under study, a properly constructed model allows the researcher to control,
and incrementally add, which factors are likely important. Equation 16 distills evolutionary
change due to directional selection down to two key factors—β (selection) and G (genetic
variation). It allows us, quite accurately, to predict how mean trait values will change over
short-time intervals. No doubt other factors are also relevant but we wouldn’t necessarily
know that β (selection) and VA (genetic variation) are important if our model had included
various factors at the outset.

6 Extensions to specific evolutionary phenomena

In this section, we show how equation 16 can be modified and applied to particular evolu-
tionary phenomena such as sexual selection, life history theory, allometry and constraints,
ecological morphology, and social evolution. As will become evident, addressing such topics
often involves nothing more than carefully redefining one or more terms in equation 16 such
that they capture the basic properties of the system under study.

6.1 Sexual selection and mate choice

Here we show how equation 16 can be modified to capture the dynamics of phenotypic evo-
lution due to variation in mate acquisition. We focus on two major topics: models of female
mate choice and the evolution of sexual size dimorphism. Darwin’s original conceptualiza-
tion of sexual selection was predicated on explaining the existence of male traits that were
seemingly detrimental to viability (e.g., a conspicuous peacock’s tail) or had no intuitive
functional purpose (e.g., extremely large antlers); his solution was to suggest that some male
traits that were bad for survival were good for obtaining mates. A major component of
sexual selection concerns female mate choice. Males displaying elaborate traits were more
likely to be chosen by females for mating independent of how their trait influences their
viability. In this regard, modeling sexual selection of female preferences requires that we
consider three traits—a trait denoting female preference (p), a male display trait (t), and a
trait pertaining to viability (v)—and two types of selection: sexual selection (due to vari-
ation female preferences), and non-sexual selection (which captures selection that operates
on aspects of fitness not due to mate acquisition). We can modify equation 16 to capture
female preference models of sexual selection. This approach is developed and treated in de-
tail by Fuller et al., [44]. Because two types of selection are present, the selection gradient is
broken up into two components, one due to non-sexual selection (βn) and one due to sexual
selection (βs). The G matrix contains the variances and covariances among the three traits.
The general model is

∆z̄ = G(βn + βs) (21)
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and expanding the terms ∆z̄t
∆z̄p
∆z̄v

 =

 VA(t, t) CA(t, p) CA(t, v)
CA(t, p) VA(p, p) CA(p, v)
CA(t, v) CA(p, v) VA(v, v)

×
[ βn,t

βn,p
βn,v

]
+

[ βs,t
βs,p
βs,v

] (22)

Female preference models of sexual selection come in many different forms, for example
Fisher’s runaway selection model, the good genes model, sensory bias models, and direct
benefit models. As shown by Fuller et al. [44], the predictions from these different models
specify which terms in the G matrix and selection gradient vectors should be important.
Many of these sexual selection models require that the selection coefficients and variances
and covariances change as the system evolves. Thus, Fuller et al., showed the initial and
equilibrium conditions for each model. Below, we discuss two models that are likely to be
important in primatology: the “good genes” model and the “direct benefits” model.

In the good genes model, males are chosen by females because males posses some traits
that confer high viability, which the female’s offspring inherit. This model was developed
to explain why females choose particular mates despite the fact that their mates offer little
in terms of paternal care (i.e., females are choosing mates based on male’s genes, not their
paternal ability). Good genes models possibly operate in mandrills [86]. Two assumptions
of the good genes models are that the cost of the male trait (t) increases with the size of
the trait and that the cost of the female preference (p) increases with females choosiness.
Both are realistic: a male trait may be an elaborate display (e.g., some African antelopes
“stot” or jump up and down in front of a predator in what is interpreted as a display of
vigor) and a lengthy display may attract predators; equally, females who spend too much
time looking for the right mate may spend less time feeding or may be more vulnerable to
predation. Under the good genes model, at equilibrium, the important terms in equation 18
are highlighted below ∆z̄t

∆z̄p
∆z̄v

 =

 VA(t, t) > 0 CA(t, p) > 0 CA(t, v) > 0
VA(p, p) > 0 CA(p,v) > 0

VA(v, v) > 0

×
[ βn,t < 0

βn,p < 0
βn,v > 0

]
+

[ βs,t > 0
βs,p ≡ 0
βs,v > 0

]
(23)

In equation 23, the negative βn,t, βn,p coefficients capture the action of non-sexual selection
on the high costs of having an elaborate trait as well as being too choosy. The positive
βn,v, βs,p, βs,t terms reflect the fact that viability (v) is positively selected for (since males
survive in spite of the elaborate trait), and that both the trait and the viability it confers
are under positive sexual selection. In this model, there is never any direct sexual selection
for preference (denoted by β ≡ 0). The non-sexual selection against preference (βn,p < 0)
is counteracted by the indirect positive selection for female preference due to the positive
genetic covariance term CA(p, v); thus females are selected to prefer elaborate males, but
this preference is a correlated response due to positive sexual and nonsexual selection for
viability (βn,v > 0, βs,v > 0).

In the direct benefits model of mate choice, females choose males because of the immediate
qualities they can confer to the female and her offspring (such qualities include things like
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paternal care or protection from predators). In this model, there is no trait—and hence no
selection—that signals good genes to the female (e.g., a trait that signals increased viability).
Thus at equilibrium the direct benefits model is,

 ∆z̄t
∆z̄p
∆z̄v

 =

 VA(t, t) > 0 CA(t, p) CA(t, v)
VA(p, p) > 0 CA(p, v)

VA(v, v)

×
[ βn,t < 0

βn,p < 0
βn,v

]
+

[ βs,t > 0
βs,p > 0
βs,v

]
(24)

In this model, the important terms are the following: non-sexual selection against preference
(females incur a survival cost for being too choosy, βn,p < 0,), and sexual selection for
preference (females recieve direct benefits for selecting particular mates, βs,p > 0). There is
no additive genetic covariance between preference and viability.

These are just two of the many models of mate choice. The contribution from Fuller et al.,
was to put these models into a common framework; this allows for the easy identification of
the key terms that distinguish each model. As Fuller et al., point out estimating such terms
can be daunting but doing so will allow better resolution to the processes shaping mate
choice in wild populations. Estimating some of the terms in equations 23 and 24 would go
a long way toward sorting out whether female primates gain direct and/or indirect benefits
when choosing mates (reviewed in [71]). We should note that our treatment above is highly
simplified; for example, we have ignored mutational input—a pivotal term that can change
the predictions of a particular model (compare [54] with [76]). Our goal here was to illustrate
the basic quantitative genetic framework of sexual selection via mate choice. Kokko et al.,
[55] provides additional commentary and analysis on these models and overall framework.

6.2 Sexual selection and size dimorphism

We now turn to the evolution of sexual size dimorphism (SSD). In many primate species,
SSD likely evolved due to male-male mating competition [75]. The first explicit quantitative
genetic treatment of SSD was provided by Lande [58]. Our explanation follows that given
in [78]. To set up his treatment, Lande introduced a model of stabilizing selection. This
type of selection can be captured mathematically by denoting θ as a vector of optimum trait
values and z̄ as the mean values of the traits in question, then one can represent stabilizing
selection as

θ − z̄

Thus when each trait is at its optimum, the expression goes to zero. This makes sense,
in that if we are modeling how traits change under stabilizing selection, we would expect
no more change due to selection once traits reached their optimum value, (i.e., ∆z̄ = 0).
Lande’s full model of stabilizing selection was thus

∆z̄ = G(ω + P)−1(θ − z̄) (25)
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P and G are the phenotypic and additive genetic variance-covariance matrices respectively.
The new terms in this equation are a matrix of stabilizing selection values (ω) that specify
the strength of stabilizing selection (along the diagonal) and correlational selection (on the
off-diagonal). If there are n traits in the model, then ω is a n x n matrix. If the entries along
the diagonal of ω are much greater than the corresponding values in the P, then selection
is weak, whereas if they are much smaller than the phenotypic variance then selection is
strong. To model the effects of selection acting separately on males and females, Lande
added more terms to equation 25. The first term is a vector of sexual selection coefficients
(βs) that specify the strength of directional selection acting on either males or females, the
second term was a modified additive genetic variance-covariance matrix that specifies the
amount of genetic covariance between males and females (B). Given these new terms, Lande
measured how male traits change as a result of directional sexual selection in males using
the following equation (an analogous equation was developed for females but we don’t show
it here, see [78]):

∆z̄m = 0.5 Gm(ωm + Pm)−1((θm − z̄m) + βs,m)

+ 0.5 B (ωf + Pf )
−1((θf − z̄f ) + βs,f ) (26)

This equation, while seemingly daunting, has three main parts: 1) stabilizing selection acting
on male traits (captured by the ωm,Pm,θm, z̄m terms); 2) directional sexual selection acting
on male traits (the βs,m terms); and 3) the effect of stabilizing and sexual selection acting
on female traits (the same terms in parts 1 and 2 but subscripted with f). The two additive
genetic variance-covariance matrices specify the covariances in traits within a male (Gm)
and the covariances between males and females (B).

The evolution of sexual dimorphism depends largely on the size of the genetic covariance
between the sexes (B) as well as the pattern of selection on males and females. The evolution
of sexual dimorphism using equation 26 has largely been studied through simulation. In this
case, the researcher specifies initial trait values for males and females as well as the strength
of the covariances and the strength of stabilizing and sexual selection. A simulation is run
using equation 26, with males and females initially starting out at the same size (this is akin
to stating that natural selection favors males and females at the same optimal size). One
can then plot the trajectory of changes in male and female body size against time. When
directional sexual selection is acting on male body size but not female size, most simulations
show a characteristic trajectory of body size values for males and females, as discussed in
[40] (Figure 2). Initially, both male and female size increases due to direct sexual selection
on male body size with the increase in female body size resulting from a correlated response
(this period of monomorphism can last numerous generations depending on the magnitude of
selection and genetic correlations). After this initial and equal increase, however, the mean
male and female trait values slowly begin to diverge, and the rate of divergence depends on
the magnitude of the terms in B matrix. Over many generations, the two sizes settle on their
new optimal sizes: Females return to the size favored by natural selection, whereas male size
is a balance between the effects of natural selection and sexual selection. It is important to
note that the above model is highly simplified. Fairbairn [40] and Reeve and Fairbairn [78]
present good discussions of the assumptions and limitations of these models. A recent and
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interesting alternative model for SSD as it applies to primates is given in [47].

Figure 2: Schematic of a typical simulation of equation 26 for the evolution of sexual size
dimorphism (redrawn from [40]). Sexual selection operates on male body size and natural
selection selection operates on male and female body size in the form of stabilizing selection.
The actual trajectory of body sizes depends on the parameter values in eq. 26 and population
size; the dots do not represent single generations, they simply show the basic trajectory. Note
that monomorphism occurs during the phase bracketed by arrows. See text for discussion.

Such simulations have interesting implications for the evolution of sexual size dimorphism
in primates. As shown in Figure 2, there is an initial period in which males and females are
monomorphic, even though both sexes are increasing in size (the portion of the trajectory
between the arrows). This suggests that in monomorphic primates (e.g., Callicebus or some
Propithecus spp.), similar size may be due to either no sexual selection acting on males (likely
in the case of Callicebus), or that equal body size is due to non-equilibrium conditions, where
equal male and female body size is a transient condition, as has been proposed in some diurnal
lemurs [92] (but see [61]).

6.3 Life history theory

Imagine we are interested in understanding how selection acts on the life history traits of
a baboon. Recall that life history traits are the major phenotypic manifestations of fitness
itself. In this regard, all we are doing is recognizing that things like age at sexual maturity,
survivorship, and age at death are phenotypic traits and thus can be targets of selection
similar to morphological traits. The best way to understand how selection acts on such
traits is to develop a life cycle model. The life cycle model (or graph) should capture the
particular life history traits one wants to examine. An example of a life cycle is given in
Figure 3. This life cycle has four stages corresponding to 1yr olds, juveniles, subadults/adults
without offspring, and mothers with infant. The arrows on the life cycle specify which
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transitions are possible from year to year (i.e., you can go from yearling to juvenile but not
vice versa) and the coefficients under the arrows give the average probability of making the
transition specified by the arrows each year as well as the average probability of giving birth
(transititon F4). The coefficients can also be represented in a matrix form and such a matrix
is called a projection matrix, by convention denoted as At, with entries aij denoting the ith
row and jth element in matrix A (to keep with this convention, we use aij to denote life
history traits, rather than z in this section).

Figure 3: Hypothetical life cycle (top) and projection matrix (bottom) for a baboon. This life
cycle contains four stages. The coefficients on the arrows represent the probability of moving within
(Pi) and among (Gi) stages each year. The F4 term represents the probability of moving into the
maternity stage (i.e., giving birth) multiplied by the probability that the infant will survive to
stage 1. These probabilities enter into the projection matrix (At). The dominant eigenvalue of
the projection matrix provides the population growth rate, λ (see section 4). Sensitivities of λ to
entries in the projection matrix can be interpreted as directional selection gradients, as discussed
in the text.

It should be apparent that the coefficients tell us something about the life history of the
organism because they specify probabilities of survival, growth, and fertility. [Obviously it
is possible to develop many alternative life cycles for a baboon, including those using ages
instead of stages—the key is to develop a life cycle that represents the biological question
you’re interested in.] What we want to find out here, is how directional selection acts on these
coefficients. Answering this question will provide insight into which stages are important
determinants of fitness. In 1982, Lande demonstrated how to connect the demographic
aspects of life history theory to quantitative genetics [59]. What he was able to show was
that response to selection on life history traits could be calculated as

∆ā =
1

λ
G∇λ (27)
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where,

∇λ =


∂λ
∂a11
∂λ
∂a12

...
∂λ
∂aij


In words, this equation reads: the change in the mean phenotype of a vector of traits is equal
to the reciprocal of mean population growth rate (λ) multiplied by the G matrix multiplied
by the selection gradient. The biological interpretation of the terms in the equation is as
follows. The ∆ā is the response to selection, which captures the following process: the
change per unit time in average phenotype is equal to the difference between the mean
breeding value at birth and at age x, divided by the generation time. This formulation
encapsulates the idea that at birth the genotypic and phenotypic probabilities of survival,
growth, and fertility are similar, but as the population ages the phenotype distribution
changes because some individuals fail to survive or breed. What Lande derived was the
fact that as phenotypes change through time, the change in phenotypes is due to differences
in survival among particular genotypes (from birth to age x), weighted by the number of
offspring each genotype produced. On the right hand side of the equation, the G, is the
G-matrix—a matrix containing the additive genetic variances and covariances for the life
history traits. The last term is a vector of selection gradients. Formally, this is an array of
partial derivatives of mean population growth rate with respect to each trait. Such partial
derivatives are analogous to the β coefficients in equation 15 above (that is, β ≈ ∂λ

∂aij
). Like

beta coefficients, the partial derivatives measure the direct action of selection acting on each
life history trait while all others are held constant.

Lande’s final equation (equation 27) is very similar to equation 16. What is underappreciated
is the elaborate mathematics used to merge the demographic aspects of life history theory,
as captured by the life cycle, and the basic framework of quantitative genetics, as expressed
in equation 16. The clearest exposition of Lande’s derivation is given in Caswell [21]. In
connecting the two, it was necessary to make adjustments to equation 16 to incorporate age
or stage structure and overlapping generations while making sure that the measure of fitness
relates to the transitions in the life cycle graph. Further, as in other conceptualizations of
multivariate evolution, the equation must account for correlations between traits, since life
history theory is predicated on idea that many traits have negative correlations (i.e., trade-
offs). Finally, Lande needed to make sure the response to selection is measured in absolute
time, not per generation. Lande’s equation provides a critical link between understanding life
cycle evolution and quantitative genetics. There is a substantial body of theory for analyzing
projection matrices and an important concept in this theory is the concept of sensitivity [22].
In the most common usage, sensitivity measures the degree to which population growth rate
would change given some change (i.e., perturbation) in the projection matrix entry, holding
all other entries constant (recall that the matrix entries give us the probabilities of engaging
in some sort of life history transition). Mathematically, sensitivities are represented as ∂λ

∂aij
.

Immediately, this should look familiar: ∂λ
∂aij

is a component of the selection gradient in

Lande’s equation (see equation 27, above). Thus, sensitivities in matrix population models
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have an interpretation as selection gradients, this is because they measure how fitness (as
represented by population growth rate, λ), depends on (or “covaries with”) a particular life
cycle transition, aij, and we learned in Section 4 that selection can be formally defined as
the covariation between fitness and phenotype. Sensitivities are a key part of demographic
theory; Lande’s contribution was to anchor them into an evolutionary quantitative genetic
framework. We should note that such selection gradients ( ∂λ

∂aij
) measure directional selection;

to measure stabilizing/disruptive selection it is necessary to take the second derivatives of
fitness with respect to each trait (i.e., ( ∂

2λ
∂a2

ij
)). There are several programs that enable the

calculation of sensitivities from projection matrices (e.g., RAMAS, Vortex) and they can also
be calculated using a few lines of Matlab code [22] or R code [51]. Upon their calculation,
one can interpret the sensitivity value as the magnitude of directional selection acting on
that transition in the life cycle (see Section 7.1).

6.4 Evolutionary constraints

In this section and the next one we address topics that examine how traits interact during
their evolution. We will consider the G matrix first. The G matrix tells us, in part, how
two or more traits will respond to selection based on their genetic covariances. Depending
on the sign of these covariances, the response to selection (i.e., the change in mean trait
values) may not be in the direction of highest fitness. Here, we define “constraint” as a
bias in the selection response that prevents a population from reaching its maximum fitness
(maximum fitness could be determined a priori, for example, through an optimality model).
For example, assume that height and weight have a negative genetic covariance. This would
suggest that direct selection to increase height would indirectly decrease weight (and vice
versa). Now imagine an ecological scenario in which both increased height and increased
weight conferred the highest fitness (for example, tall and heavy individuals may have an
advantage during aggressive contests). Consider, that there is direct positive selection to
increase height and direct positive selection to increase weight. Because of the negative
genetic covariance between height and weight, the response to selection will not move in
the direction of both increased height and weight. Thus, the negative genetic covariance
constrains, or biases, the selection response away from the trait values which confer the
highest fitness [26]. The G matrix can also enhance, rather than bias, the selection response.
In this case, if two traits are positively correlated and there is direct positive selection on
both traits, the selection response will be enhanced. Conner and Hartl [37] provide a nice
table illustrating how evolutionary change will be enhanced or constrained depending on the
sign of the genetic covariance and the whether directional selection is acting to increase or
decrease the mean value of a trait (Table 2).

It is important to note that a negative genetic covariance can exist despite a positive phe-
notypic covariance among traits. Cheverud [27] suggests that often phenotypic covariances
can be used as a proxy for genetic covariances, when the latter cannot be measured directly.
However, this proxy appears to hold better for morphological traits, but not life history
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Table 2: Ways in which genetic covariances enhance or constrain the selection response
depending the pattern of selection acting on each trait (from [37])

Sign of genetic Sign of β for each trait:

covariance: Positive Negative

The selection response will be:

Positive Enhanced Constrained

Negative Constrained Enhanced

traits [82]. In fact, life history theory suggests that there should be trade-offs among traits
such as survival and reproduction, as well as current and future reproduction [88] [83] (see
Section 7.2). Here, the P and G matrices are expected to contain negative covariances be-
tween traits; such covariances can bias the response to selection toward non-optimal trait
combinations. Arnold [7] provides a good discussion of evolutionary constraints and Pigli-
ucci [72] provides a recent review and critique of the “G matrix concepts” in evolutionary
biology. Two additional points are worth mentioning about the G matrix. The first is that
such constraints and biases in the selection response operate over the short-term—predicting
long-term trajectories requires the major assumption that the terms in the G matrix do not
change. Second, the G matrix tells us how the mean values of traits respond to selection
due to a common genetic control. In principle, one can have associations between trait
distributions that involve other moments of the distribution (e.g., variances, skewness, and
kurtosis). For example, selection on the mean of one trait can change the variance or skew-
ness of another trait. Rice [80] [81] develops a body of theory for the evolution of entangled
traits ; traits were selection on the nth moment of one trait’s distribution changes the mth

moment of another trait’s distribution due to developmental associations among traits [81].

6.5 Allometry

Allometry is the study of scaling relationships among anatomical systems. Most often,
allometry is studied in the context of how one morphological measurement changes in size
or shape with respect to changes in another morphological measurement. A lot of work
in allometric studies seeks a biological interpretation for the scaling relationship among
two or more traits. Because allometry involves two (or more) characters that covary, it
suggests that it can be studied using phenotypic or genetic variance-covariance matrices.
In fact, the original derivation of equation 16 above, was used in the context to study
brain-body mass allometry in mammals by Lande [57]. What was known at the time was
that brain-body mass had an allometric coefficient of 0.2-0.4 among closely related species
(i.e., within the same genus). One of the goals of Lande’s analysis was to figure out if
this allometric scaling relationship could be explained by directional selection on body size
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with brain size being a correlated response. Here, we’ll look at the ways in which equation
16 can be used to gain insight into allometric relationships. We’ll denote z1 as the log of
body size and z2 as the log of brain size. Further, for notational purposes, we will define
additive genetic variances and covariances for traits as σ2(A1, A1) and σ(A1, A2), respectively
(i.e., CA(1, 2) = σ(A1, A2) from above); we change the notation since it is easier to keep
track of how a variance , σ2(A1, A1), can be converted to a standard deviation by taking
it’s square root,

√
σ2(A1, A1) = σ(A1, A1). With this new notation, we’ll look at Lande’s

conceptualization of allometry. Note that since the allometry coefficient is a slope, and a slope
is defined as a change in y over a change in x, we can write ∆z̄2

∆z̄1
. With this, we can consider a

two-trait version of equation 16 (see equations 6 and 7) and write out the direct response of
selection on body size as ∆z̄1 = σ2(A1, A1) β1; note that this expression is simply the additive
genetic variance for body size (σ2(A1, A1)) multiplied by the strength of directional selection
(β1) acting on body size. Similarly, the correlated response of brainmass to selection on body
size is ∆z̄2 = σ(A1, A2) β1; this expression is the additive genetic covariance between body
size and brain size and the strength of directional selection acting on body size. Writing out
these terms with respect to the way they scale allometrically (∆z̄2

∆z̄1
) and doing some algebra

yields,
∆z̄2

∆z̄1

=
σ(A1, A2) β1

σ2(A1, A1) β1

=
σ(A1, A2)

σ(A1, A1)σ(A2, A2)

√
σ2(A2, A2)√
σ2(A1, A1)

(28)

The left term on the right side of equation 28 is a covariance divided by the standard
deviation of traits 1 and 2. This is the definition of a correlation coefficient, often denoted
as ρ. In this case, ρ is the additive genetic correlation, ρG, hence equation 28 can be written
as

∆z̄2

∆z̄1

= ρG
σ(A2, A2)

σ(A1, A1)
(29)

Lande used experimental results from mice to determine the values of ρG and σ(A2, A2)/σ(A1, A1);
respectively these values are 0.68 and 0.524. Plugging these values into equation 29 gives us
a value of

∆z̄2

∆z̄1

= ρG
σ(A2, A2)

σ(A1, A1)
= 0.68× 0.524 = 0.356 (30)

Recall Lande’s original goal was to find a biological reason for why brain-body mass scaled
with a ratio of 0.2–0.4 (∆z̄2

∆z̄1
= 0.2-0.4). The calculated value in equation 30 falls within

this range. Thus from equation 30, Lande concluded that the allometry of brain-body size
among closely related species could be explained as a consequence of direct selection for body
mass with brain size increasing as a result indirect selection. Allometry is widely studied in
primates (e.g., [65] [43]); as genetic estimates become available, it will be interesting to see
if other allometric patterns could be explained with respect to direct and indirect selection
pressures.
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6.6 Ecological morphology

In 1983, Arnold published an influential paper that connected selection gradients to ecological
morphology ([5] also see [53]). Arnold’s main point was that equation 16 allowed researchers
to directly measure the adaptive significance of a particular anatomical trait. His approach
partitioned selection into two distinct components. One component of selection was the
“performance gradient”, measured as the trait’s influence on some measure of performance
(e.g., how lower limb length influences walking speed). The second component of selection
was the “fitness gradient”, or how the measure of performance influences reproductive output
or some other measure of fitness (e.g., how walking speed influences survival). This partition
formalized the basic goal of ecological morphology: to understand morphological traits in
the context of ecological selection pressures and evolutionary change. If we designate traits
z, as above, performance measures as p, and fitness as F , then we relate the two gradients as
depicted in Figure 4. Both gradients are estimable using partial regression (which controls
for covariances between traits). Thus, the framework outlined by Arnold drew from the same
statistical machinery as that of multivariate selection theory.

Figure 4: Arnold’s conceptualization of the relationship between morphology, performance,
and fitness. The top part of the figure shows the basic pathway between a trait and fitness.
The bottom shows the relationship between many traits, two measures of performance, and
fitness. The performance gradients (βpizi) and fitness gradients (βFpi) can be measured
using partial regression. The double-headed arrows represent phenotypic covariance.

Arnold’s paper is very important for formalizing and drawing connections between two fields
that, at the time, were somewhat distinct: functional morphology and theoretical evolu-
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tionary biology. This is not to say that practioners of one field were ignorant of the basic
tenets of the other field. Only that functional morphologists often made little mention of
selection coefficients and variation in fitness, while those studying the theory of selection
dynamics usually did not consider the nuances of form-function relationships. Arnold was
able to specify a research program that connected how traits perform in a given ecological
task with how such performance influences fitness. Arnold’s conceptualization grounded the
raw material of evolutionary change—variation in traits—in a field that has some of its
roots in typology and structuralism [4]. In addition, Arnold was able to provide an explicit
methodology that allowed connections between proximate (e.g,. ecological function) and
ultimate (e.g., the adaptive process) domains in biology. While some of these ideas appear
obvious in hindsight, Arnold provided an explicit methodology for merging empirical and
theoretical research in the context of morphological evolution. Walker discusses an extension
of Arnold’s approach [94].

6.7 Social behavior

While Arnold’s paper sought to connect morphological variation to fitness, a recent for-
malization has the promise to connect behavioral variation to variation in fitness [69] [97]
[98]. As in other models of the phenotype, the approach of Moore et al., [69] breaks down
a phenotypic trait (zi) into two components: an additive genetic affect (ai) and a general
environmental effect (eg,i). Thus we can write zi = ai + eg,i. In this case we will view
zi as a behavior rather than an anatomical trait. In social behaviors, often one behavior
provides the “environment” that influences another behavior. For example, a dominance
threat displayed by one individual is a behavior that often elicits a behavioral response (e.g.,
submissive gestures) in a different individual. In this context, one individual’s behavior is
an environmental influence on another individual’s behavior. To this end, we can write out
how another behavior (zj) influences our behavioral trait zi as

zi = ai + eg,i + ψijzj (31)

In this case, the new terms are the other individual’s behavior (zj) and the effect (ψij) that
this behavior has on our focal trait zi. This is illustrated in Figure 5.

With this basic framework, let us consider the case of dominance and submissive behaviors.
In many such cases, agonistic threats influence the subordinate’s level of submissive response
and, in turn, the subordinate’s response mediates the intensity of the aggressor’s threats. In
this case there is a reciprocal effect of one trait’s expression on another trait. Putting this
situation into mathematical notation, let’s denote dominance threats as z2 and submissive
displays as z1. Both of these traits are capable of being displayed by all individuals but they
are treated as separate characters. We will write out expressions for how dominance displays
are componsed of direct genetic and environmental effects and an indirect effect. They are
(the ′ indicates the trait of another individual),

z1 = a1 + eg,1 + ψ12z
′
2 (32)
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Figure 5: The logic behind social selection models. If there is only a single individual, a
trait zi is composed of additive genetic component (ai) and an environmental component
(ei). When there are social effects, the trait zi is similarly influenced by an additive and
environmental effect, but in addition, a conspecific’s trait (zj) (or behavior) also influences
the expression of the focal individuals trait (zi). The term Ψij measures the magnitude of
the effect that zj has on zi. When zi also has an effect on zj (dotted line) we would note the
effect of zi on zj as Ψji.
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z2 = a2 + eg,2 + ψ21z
′
1 (33)

From equation 32, we see that submissive displays are influenced by additive genetic effects
(a1), general environmental effects (eg,1), and the strength of the influence, denoted as ψ12,
that dominance displays (z2) have on submissive displays. Equation 33 gives the components
of dominance behaviors in light of the expression of submissive behaviors. Moore et al., [69]
derived a multivariate expression for how average trait values change under selection due to
indirect genetic effects, such as the social environment provided by another individual. This
expression is

∆z̄ = Cαp β(I−Ψ)−1 (34)

In this equation, the mean change in an array of behaviors is determined by direct selection
on each trait (the β term) as well as by a matrix which specifies the strength of the effect
of outside behaviors—the indirect genetic effects; this is denoted by (I−Ψ)−1. The term I
denotes an identity matrix, which is a matrix of ones along the diagonal and zeros on the off-
diagonal and Ψ is a matrix of coefficients that specify the strength of the indirect effect. We
have replaced the familiar G matrix with Cαp—a matrix of the correlations between breeding
value and corresponding phenotype. In most situations, we can write the correlation between
breeding value and phenotype (ρα,P ) in terms of VA (that is, VA = ρα,P ). However, when a
trait is influenced by indirect effects, then we can no longer use VA as a stand-in for ρα,P . This
is because our trait in question, z, is now a function of its own direct additive genetic and
environmental effects, plus the additive genetic and environmental effects of its conspecific
(see Figure 4). The indirect genetic effects enhance or diminish the correlation between the
breeding value and phenotype of the focal individual. In this case, one needs to substitute
the actual values for ρα,P into Cαp in lieu of using VA as we do in the G matrix.

It is helpful to write out the the average change in a single trait. From equation 34, we can
write

∆z̄1 =
[
Gff β1 +Gfc β2

]
+ ψ12

[
Gfc β1 +Gcc β2

]
(35)

From equation 35, we see that the average change in trait z1 is specified by direct selection
on the trait and its covariance with another trait (the bracketed terms on the left), plus
the indirect genetic effects (the bracketed terms on the right). The new terms are Gff , the
additive genetic variance in the focal animal’s trait; Gcc, the additive genetic variance in
the conspecific’s trait; and, Gfc, the genetic covariance between direct additive effects and
indirect additive effects. If the term Gfc is positive, alleles that cause an increase in the focal
animal’s trait also increase the conspecific’s trait. The key to understanding this equation
is to note that a social behavior is both an environmental effect and a genetic effect. That
is, the behavior creates an environment that influences a particular trait, and the behavior
itself usually has some genetic basis (i.e., it is partly heritable). This model of indirect
genetic effects is a generalization of a kin selection model. It is possible to replace ψ with
“r”, the coefficient of relatedness; when we do this, we have a model of kin selection that
incorporates not only the influence of a relative’s behavior on the focal animal’s trait, but also
the influence of the focal animal’s own additive genetic effects on its own trait. Moreover,
this model does not ignore heritability of traits—a key parameter that is not included in
most conceptualizations of Hamilton’s rule (see [28]). Thus, equation 34 provides a very
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general framework for understanding the influence of the allele’s carried by conspecifics on
the expression of a trait in a focal animal.

Finally a topic of recent interest that we do not cover here is phenotypic integration (of-
ten known as morphological integration). Perhaps more so than any other topic covered
here, phenotypic integration has a long-standing tradition in primate biology and some of
the first studies of phenotypic integration were conducted on owl monkey teeth [70]. phe-
notypic integration draws from the field of quantitative genetics since it concerns several
(presumably polygenic) traits and how these traits evolve to become interdependent. In
particular, phenotypic integration manifests as strong phenotypic covariation due to traits
which are functionally or developmentally interdependent. As such, phenotypic integration
involves an investigation of the G and P matrices. Cheverud [27], among others, showed
that there is a strong correlation between G and P. Due to this, many studies of phenotypic
integration only examine patterns of phenotypic covariation (e.g., [1] [63] [85]). Ackermann
and Cheverud [2] provide an excellent review of phenotypic integration studies in primates,
and methodological and theoretical approaches are covered in [33] [24] [68]. The general
framework of phenotypic integration has recently been extended to behavioral traits in an
approach commonly known as “behavioral syndromes.” This approach seeks correlations in
particular behaviors among individuals in a population; the framework for studying suites
of behaviors is accommodated using a phenotypic (or genetic) correlation matrix (reviewed
in [87]).

7 Quantitative Genetic Studies of Primates:

Some Examples

Some early and influential studies of quantitative genetics were first conducted on primate
species, notably in the work of Cheverud (e.g., [30] [31]). Since then, the estimation of quan-
titative genetic parameters on wild and free-ranging primates has been sparse, but growing.
In this section we review studies that have estimated one or more of the various parame-
ters, or associated parameters, in equation 16 in wild or free-ranging primate populations.
These include selection differentials, selection gradients, heritability, and genetic correlations.
Our review is not exhaustive; instead, we focus on recent studies that illustrate the diverse
approaches to understanding adaptive evolution in non-human primates. There is a large
literature on heritability/quantitative genetics for captive primates as well as humans; we
don’t review these topics.

7.1 Measuring selection in primate populations

Although methods for measuring selection have been around for a long time, there have
been few applications to wild primate populations. We summarize some of the most recent
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studies and the main results of these studies are provided in Table 3. De Gusta et al., [39]
figured out a way to measure viability selection in a population of wild Howler monkeys
(Alouatta palliata) from Barro Colorado island. They were able to determine a proxy of a
selection differential by measuring the bucco-lingual width of the first upper molar (UM1).
The measurements came from a collection of crania “found dead” of natural causes on the
Island. The crania were sexed and aged based on standard techniques. Each cranium was
assigned to one of five dental stages based on the eruption sequence of other teeth in the
crania. Their choice of UM1 width was based on the fact that this trait has been shown to
be partly heritable and that the molar crown is fully formed soon after birth and therefore
does not exhibit growth related changes. Since all animals they looked at were dead, and
eruption patterns provide an estimate of relative age, then these data provided estimates
of age at death—a measure of fitness. Their phenotypic measurement doesn’t change with
age but shows natural variation, some of which may correlate with survival. De Gusta and
colleagues looked at the width of UM1 against different age classes and showed that animals
with smaller UM1 widths were more often found dead than animals with larger UM1 widths.
They interpreted this as viability selection against animals with smaller UM1s. Specifically,
they found that the highest mortality, and hence strongest selection, was against animals in
the 6-12 month stage, a period that corresponds to weaning. As they note, they were only
able to measure this particular trait’s correlation with fitness and were not able to parse
selection into direct and indirect components, nor account for variation in maternal health.
Nevertheless, De Gusta et al.’s study is interesting because it demonstrates that selection
can be estimated in non-obvious ways—a collection of dead animals. This approach is one
of the first to measure phenotypic selection in a wild population of primates.

Another recent study of viability selection used demographic data to estimate selection on
foot length in a wild population of Verreaux’s sifaka (Propithecus verreuaxi verreauxi). One
of the goals of this study was to examine if foot length, which scales with negative allometry
to body size during growth, was associated with survival [62]. In this regard, Lawler [62]
sought to test if foot size was adaptive. Since foot size is a trait that changes with age
it is necessary to remove growth related variation. This was accomplished by regressing
foot size against age. The residuals from this regression provide a measure of age-corrected
size variation. Other age-corrected traits included humerus length, radius length, hand
length, femur length, and tibia length. Multiple regression was used in order to estimate
the magnitude of direct selection (i.e., the selection gradient, β) acting on each trait. A
discrete measure of fitness was used as the dependent variable: alive past age of eight or
dead before age of eight. All traits were standardized to have a mean of 0 and a standard
deviation of 1 and fitness was scaled to produce relative fitness. The resulting directional
selection coefficients indicated that strong selection was acting on foot length (β =0.119).
Standardizing the traits allows us to interpret the selection coefficient as follows: relative
fitness will increase by 11.9% for every increase in one standard deviation in foot length.
From these findings, Lawler proposed that increased foot length (relative to body size) plays
a role in allowing younger animals to safely leap between substrates; younger animals with
relatively shorter feet have lower survivorship.

A similar study on this same population estimated the strength and type of intrasexual
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selection in male Verreaux’s sifaka [61]. In this study, the goal was to determine which
traits were important determinants of male fertility. As such, the measure of fitness was the
relative rate of offspring sired by males over a given sample period (that is, the number of
offspring produced produced by each male divided by the number of years he spent in the
sample period). The traits in the analysis were body mass, canine length, arm shape, torso
shape, and leg shape (the latter three traits were principal components of numerous linear
measurements). Lawler et al., [61] estimated different types of selection acting on these five
traits with respect to male fertility. They found that significant directional selection acts on
leg shape and stabilizing selection (γii) acts on body mass. In addition, there was negative
correlational selection (γij) for leg shape and body mass. These patterns of selection were
interpreted with respect to male mating competition. Male mating contests take place in
the trees and males with larger values of leg shape (which means longer legs and larger thigh
circumference) and “stream-lined” body mass were likely better equipped to engage in such
contests. Thus, important determinants of male fertility in this population corresponded to
traits that enhanced locomotor contests during the mating season.

So far, we have been considering the effects on selection on anatomical traits. However, as
discussed above, selection can also target life history traits—traits like age at sexual maturity,
survivorship in age-class k, etc. Alberts and Altmann [3] constructed an age-based matrix
population model using long-term data from female savana baboons (Papio papio). The life
cycle of the baboon was similar to that of Figure 2, but contained 27 stages, of which the
first 26 were ages 1 through 26, and the 27th stage contained a “self-loop” corresponding to
a stage of animals aged 26 years and above. The resulting projection matrix was a 27 ×
27 matrix. It is possible to calculate the directional selection acting on age-specific survival
and growth by calculating the “sensitivity” of fitness to transitions (i.e., surviving the year
and growing onto the next age) between particular age classes. Technically, Alberts and
Altmann [3] calculated elasticites, which are scaled sensitivities, but we present sensitivity
values here. Using the right hand side of equation 27, sensitivity values for all age class
transitions were calculated. The overall pattern that emerges from these calculations is that
strong directional selection acts on the youngest age classes. For example, the directional
selection coefficient ( ∂λ

∂a21
) acting on the transition from age 1 to age 2 (this would correspond

to the G1 transition in Figure 3) is 0.127. Coefficients for other transitions between younger
age classes are similarly valued around 0.11. The strength of directional selection drops off
quite steeply for transitions between older age classes, a pattern seen in most other long-lived
vertebrates [22].

7.2 Measuring heritability and genetic correlations
in primate populations

In this section, we examine studies that estimated heritability and genetic correlations in wild
or free-ranging primates. Because heritability is proportional to additive genetic variance,
it is a key parameter governing the evolutionary response to selection (see equations 1 and
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Table 3: Summary of studies on wild/free-ranging primate populations that estimated se-
lection

Trait(s) involved Parameter Reference Major finding

Upper molar S [39] Animals with wider molars
width have higher survivorship

Foot length β [62] For animals 1 to 8yrs, longer feet
is associated with higher survival

Leg shape β [61] Male fertility iss associated with
longer, stronger legs

Body mass γii [61] Male fertility is associated with
intermediate body mass

Body mass γij [61] Correlational selection acts on
and leg shape body mass/leg shape

Survival in age ∂λ
∂aij

[3] Directional selection is strongest

class k at younger age classes

15). Accordingly, several researchers have sought to estimate the heritability and genetic
correlations of morphological and life history traits in wild primate populations. These
estimates provide insight into the standing levels of additive genetic variation and covariation
for particular traits, thus helping to determine how a population will adapt to selection
pressures. Table 4 provides some examples of studies that have estimated heritability and
genetic correlations in wild and free-ranging primates.

One of the first large-scale studies of morphological heritability on a wild primate population
was conducted by Cheverud and Dittus [32]. This population of Toque macaques (Macaca
sinica) has been studied for over 30 years at Pollonuaruwa in Sri Lanka. Cheverud and Dittus
sought to estimate the heritability of 27 morphometric measurements, which included traits
such as crown-rump length, arm length, leg length, tail length, and head length. The long-
term behavioral observations made it possible to determine 172 maternal-offspring pairs
from 39 different maternal lineages. Because the data come from animals of different ages
as well as from sons and daughters, the authors first removed any age and sex-effects via
two steps; first, they fit a flexible spline regression to each trait by age (and sex) in order to
identify natural ”breaks” in the trait distribution with respect to age. The spline regression
suggested three age classes, and thus the subsequent step was to perform linear regression of
each trait against that particular age class (and sex). This resulted in sets of residual values
that were then used to estimate heritabilities of the traits. To estimate heritabilities they
linearly regressed the offspring’s trait value on the corresponding mother’s trait value using
linear regression, and they also used “pedigree methods;” this latter method takes advantage
of the fact that trait values covary among all relatives, not just mother-offspring pairs [56].
Using linear regression, the heritability is 2x the regression slope value, since mother’s only
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contribute 1/2 of the additive genetic variance to offspring trait values. They found that
23 of the 27 heritability estimates were significantly different from zero using the regression
method and all heritability estimates were significant using pedigree methods. The average
heritability among all traits was 0.51 using mother-offspring regression and 0.56 using the full
pedigree. These results suggest that a significant amount of anatomical traits, particularly
lengths of long bones, spine, and head, and the circumferences of limb elements contain a
significant amount of variation that is inherited. As such, this population has the capacity
to respond to selection on numerous skeletal elements or overall body form itself [32].

Another study that looked at heritability in a wild primate population was that of Lawler
[62]. This study is outlined above with respect to estimating selection pressures that act
on limb elements on Verreaux’s sifaka. In addition to estimating selection gradients, Lawler
also estimated the heritability of limb elements and hand/foot length. He used 146 father-
offspring pairs. The use of father-offspring pairs can reduce the influence of maternal effects
(see section 2), whereby some of the phenotypic variation in traits is due to differences among
groups of siblings born to different mothers. Lawler found that heritability values were lowest
in the hands and feet (0.116 for the foot and 0.21 for the hand) and the values increased
in magnitude moving up the limb from hand/foot to lower arm/leg to upper arm/thigh.
Lawler interpreted this pattern as partially reflecting the action of past and current selection
pressures acting on hands and feet (recall from above that positive directional selection acts
most strongly on foot length) based on the idea that selection should erode the amount of
additive genetic variance and hence lower heritability as it acts to change the mean value of
a trait across generations. However, the heritability values for these traits have very large
standard errors so this study would benefit from a more robust analysis of heritability.

The above two studies focused on skeletal traits but a more recent study looks at the heri-
tability of life history traits in free-ranging macaques. In a recent study of the quantitative
genetics of Cayo Santiago macaques (Macaca mullata), Blomquist [10] examined the heri-
tability of three traits that are strongly associated with fitness: lifetime reproductive success
(LRS), lifespan, and individual rate of increase (λi). LRS is the total number of offspring
born to females regardless of the offspring sex or whether the offspring died early into its life;
lifespan is measured in years and calculated from long-term demographic observations. λi is
an individual measure of the growth rate—not “growth” in a skeletal sense, but growth in a
demographic sense—λi measures the rate and timing of offspring production for individuals
as calculated by an individual projection matrix (in section 6.3 we discuss the population
projection matrix, which contains the average probabilities of survival, growth and repro-
duction for a population from which the population growth rate, λ, can be calculated; it
is possible to construct analogous projection matrices for individuals and then use these
matrices to calculate the individual growth rate, λi). The difference between LRS and λi is
that the latter takes into account not only total number of offspring produced but when in
the life cycle these offspring were born (see discussion on Fitness in section 4). Blomquist
estimated these “fitness traits” using two sets of females—those that lived “whole” lives from
birth to a natural death who may or may not have reproduced (the uncensored group), and
a nested set of the uncensored group of females which comprised females who lived “whole”
lives from birth to natural death but reproduced at least once in their lives (the censored
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group). Blomquist estimated the life history traits by writing the phenotypic variation (VP )
as the sum of other components of variation that included birth cohort (VC), maternal ef-
fects (VM), social group (VG), additive genetic (VA), and residual variation (VR) (see section
2). When values for each variance component were estimated, it was possible to calculate
heritability by taking the ratio of additive genetic variance to total phenotypic variance
(h2 = VA/VP ). Heritability of LRS, lifespan, and λi was 0.38, 0.36, and 0.43 respectively
using the uncensored group. When the censored group was used the heritability estimates
were roughly half the value of the uncensored estimates. The difference between these sets
of estimates can be attributed to the fact that a large portion of genetic variation is due
both survival and recruitment; that is, when females who have reproduced are the only
ones included in the analysis, this censored data set purposely omits a lot of females (and
hence a lot of variation) who didn’t survive to reproductive age. Hence, the total amount
of phenotypic variation and additive genetic variation is reduced by not including females
who died prior to reproduction. The environment at Cayo Santiago is relatively homogenous
and free from predators and factors causing nutritional stress. In this case, if there is lots of
additive genetic variation for survival in early years, a homogenous environment will create
conditions in which this additive genetic variance for survival gets exposed and animals with
“bad” genotypes die off (since there few environmental factors that cause young animals to
die due to predation and/or nutrition—that is, there is reduced environmental variation).
This results in moderately high heritabilities for uncensored fitness traits because of lot of
the variation observed in the population is due to genetic differences with respect to survival
and reproduction, not environmental differences.

The above studies focused on estimating heritability for various morphometric and life history
traits. Additional studies of free-ranging and captive primates have estimated genetic (ρG)
and phenotypic (ρP ) correlations among traits. We will discuss two such studies. Hlusko et
al., [50] used quantitative genetic techniques to estimate heritability and genetic correlations
among dental measurements and trunk length in a captive population of Hamadryas baboons
(Papio hamadryas), which is comprised of different subspecies that interbreed (P. h. anubis
and P. h. cynocephalus). This population resides at the Southwest Foundation for Biomed-
ical Research. It has been studied for over 20 years and mating designs are implemented in
this population in order to ensure non-inbred animals. Hlusko et al., used a model of phe-
notypic variation in which phenotypic variance was written as the sum of additive genetic
variation and environmental variation (VP = VA + VE) but tested for the effect of different
covariates (e.g., sex, age, percent of subspecies admixture, etc.) that may also influence
phenotypic variation. They tested whether genetic correlations exist between trunk length
and several measurements of the upper and lower second molar. It was possible to do this by
considering a two-trait version of their phenotypic decomposition into additive and environ-
mental components. In this case, the output consists of a phenotypic variance/covariance
matrix (P) which can be broken down into additive and environmental components. They
found significant genetic correlations between upper molar area and trunk length (ρG = 0.44)
as well as lower molar area and trunk length (ρG = 0.56). Phenotypic correlations between
these traits were much lower. Their results suggest that about 19–42% of the additive effects
are shared between trunk length and the area of the upper and lower molar. Additional ge-
netic correlations were found to exist between linear measurements of crown area and trunk
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length with the majority of the significant correlations existing between buccolingual width
rather than mesiodistal length. As Hlusko et al., (page 424) note, the mechanisms that link
up these two traits are likely due to, “latent rather than specific genetic factors.” The low
phenotypic correlation, in spite of the modest genetic correlation, is likely due to the various
differences in the way these two traits grow and/or are influenced by nongenetic factors.
Hlusko et al., note the relevance of this finding in that molar length is often observed to
increase in mammalian lineages whereas molar width does not. Their results suggest that a
genetic correlation between body size and molar width constrains molar dimension to only
increase in length not width. Further, they note that in phyletically dwarfed lineages tooth
width decreases much more rapidly than tooth length—this is possibly due to selection for
smaller body size and a correlated response in tooth width.

Genetic correlations have also been estimated for life history traits. Using the same large-
scale dataset for Cayo Santiago Macaques, Blomquist [11] estimated the genetic correlation
between age at first reproduction (AFR) and adult survival in females. Both AFR and
lifespan are heritable in this population [10] [12]. Motivating this study is the widespread
theoretical and empirical pattern of trade-offs among life history traits. Common trade-offs
in life history theory include current versus future reproduction and a trade off between
survival and reproduction. As Blomquist discusses, it is particularly important to estimate
the genetic correlations among life history traits because phenotypic correlations among
such traits often do not provide any indication of their underlying genetic covariation; this
is usually due to the confounding effect of environmental correlations and environmental
variation that influences life history traits. Because primates are long-lived creatures, a lot
of total adult fitness depends on surviving from year to year. In the macaque population at
Cayo Santiago, there is a very strong and positive correlation between lifespan and lifetime
reproductive output. Due to this positive correlation Blomquist sought to determine if
there was a genetic correlation between AFR and survival. In this case, a positive genetic
correlation would be evidence for a tradeoff since a later age at first reproduction would
ostensibly enhance survival, whereas reproducing earlier would diminish survival—the trade-
off. He defined four ages that could be used as survival milestones: 11, 16, 21, 26. Thus
Blomquist was looking for a positive genetic correlation between AFR and survival rates
to these four ages. Blomquist estimated the genetic correlation between AFR and adult
survival using a multivariate model in which phenotypic variation is decomposed into additive
genetic and residual variance (VP = VA +VR). He obtained the additive genetic and residual
covariances between traits and converted these covariances into correlations. The phenotypic
correlations between AFR and the four survival milestones were relatively small (ρP = 0.109,
ρP = 0.132, ρP = 0.101, ρP = 0.083, respectively) and only one correlation was significant
at the 0.05 level. However, strong and positive additive genetic correlations existed between
AFR and the four survival milestones: ρG = 0.590, ρG = 0.595, ρG = 0.476, ρG = 0.706. The
additive genetic correlation between AFR and age 11 was not significant at the 0.05 level, but
the other three correlations were significant. These results suggest a genetically mediated
trade-off between reproductive maturation and survival. Females who reproduce earlier are
less likely to survive to later ages. In fact, Blomquist was able to numerically calculate the
magnitude of the trade-off: the cost of reproducing 1 year earlier in life results in a loss
of approximately 11 months of adult life. This is the first empirical study of nonhuman
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primates that documents a key principle of life history theory, namely that genetic mediated
trade-offs exist between different components of fitness.

Table 4: Summary of studies on wild/free-ranging primate populations that estimated heri-
tability and genetic correlations

Trait(s) involved Parameter Reference Value of parameter/comments

Various traits h2 [32] average h2 was 0.53, lower
values for distal elements

Foot length h2 [62] heritability was 0.16
and higher for other limb elements

LRS, λi, lifespan h2 [10] h2 = 0.38, 0.36, 0.43 respectively
(uncensored group)

Molar area and ρG [50] Positive genetic correlation among
trunk length these two traits

Age at first ρG [11] Positive genetic correlation among
reproduction these life history traits
and survival

8 Conclusions

Because the basic properties of adaptive evolution are few: heritable variation × selection
pressure = change in phenotype, it is possible to modify equation 16 to capture almost
any specific evolutionary scenario that involves phenotypic change. Our section showing the
extensions of equation 16 to specific evolutionary scenarios captures only a portion of the
diverse approaches to studying phenotypic evolution in a quantitative genetic framework. In
contrast, our section reviewing quantitative genetic studies wild/free-ranging primate pop-
ulations are few; the lack of application is likely due to estimation problems: gathering
sufficient data from which to estimate heritability and/or selection pressures can be daunt-
ing or unfeasible. In this largely theoretical overview, we have omitted a section on how to
actually estimate the quantitative genetic parameters that we discuss. The topic of estima-
tion is a very mathematically dense literature. However, several good reviews are found in
[64] [56] [96].

It’s important to remember three rules of thumb when applying any of these multivariate
procedures to actual data: 1) Be a good biologist. By this, we mean don’t be wooed by
the multivariate analysis; you still need to interpret your data. It is especially imperative
to determine the causal structure that creates a non-zero relationship between fitness and
phenotype. The statistical relationship is vacuous without biological input from many care-
ful hours of observation and thought; 2) Remember what you left out. Your analysis is only
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as good as the traits you’ve included in the model. It is always possible that some unmea-
sured trait influences the traits that you have actually measured—you need to be mindful
of this possibility; and, 3) Do not extrapolate wildly. Equation 16 provides information on
evolutionary trajectories over the short-term and these trajectories are specific to the popu-
lation you’re studying. Selection pressures and additive genetic variances (and covariances)
change due to a variety of circumstances. To suggest that trait heritabilities or trait-trait
correlations from your population likely apply to other populations invites well-deserved
scrutiny.

The above might seem like a lot of information to the non-initiate. However, like most topics
in biology, it is only possible to scratch the surface of the field in a short review such as this.
We have left out many important topics such as phenotypic plasticity, maternal effects, and
how other evolutionary forces (e.g., non-random mating, drift, etc.) impinge on the theory
above. This review should serve only as an introduction to the field, not as a one-stop source.
The reader is highly encouraged to consult [88] [82] [83] [64] [37] [80] for further information.
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