RESEARCH STATEMENT
RICHARD R. LAWLER

BACKGROUND:

I am a biological anthropologist with expertise in behavioral ecology, population genetics, demography, and locomotor behavior. If I had to apply a single name to what I do, I would suggest “population biologist” in that I mostly tend to study a single evolving population rather than engage in comparative/interspecific studies. Broadly, I am interested in the ecological and behavioral processes that influence patterns of genetic and phenotypic variation in wild primate populations. In this regard, I tend to focus on population-level parameters (e.g., means/variances of trait values, selection coefficients, survival probabilities, etc.) rather than collect longitudinal behavioral data on specific individuals or social groups. My research incorporates fieldwork, laboratory work, and computational methods. As I discuss below, I currently focus on a species of lemur as a model system; however, my research is not motivated by a taxon but by particular research questions that emanate from the major areas within evolutionary ecology: population genetics, behavioral ecology, demography, and evolutionary morphology.

I obtained a B.A. in Anthropology from the University of Illinois, Urbana-Champaign. Dr. Paul Garber was a major influence on my career and at Illinois I focused on general anthropology as well as primate socioecology. I then went on to get a M.A. in Anthropology at Southern Illinois University, Carbondale. I studied under Dr. Susan Ford and while at Carbondale I focused on primate systematics and evolution, primate anatomy, and primate locomotor behavior. From Carbondale, I went on to get a M.Phil. and Ph.D. from Yale University. I worked closely with Drs. David Watts, Alison Richard, and Margaret Riley. I spent much of my time as a member of the Riley Lab in the Department of Ecology and Evolutionary Biology. At Yale, I studied primate behavioral ecology, population genetics, and evolutionary theory. After receiving my Ph.D., I obtained a National Science Foundation Fellowship in Bioinformatics to study demography with Dr. Hal Caswell at the Woods Hole Oceanographic Institution.

I have conducted research on howling monkeys and titi monkeys, but most of my research concerns a wild population of lemur, Verreaux’s sifaka (*Propithecus verreauxi verreauxi*). This population resides at Beza Mahafaly Special Reserve, southwest Madagascar. The study site was set up by Drs. Alison Richard (Yale University) and Robert Sussman (Washington University) in collaboration with Malagasy scientists. I am part of research team that studies various behavioral, ecological, and evolutionary aspects of this evolving population. What is unique about this study, now going into its 30th year, is that our team is able to capture and release our study subjects—this is not the norm in wild primate studies. The data we collect on this population is ever-increasing and contains information on demography, morphology, ecology, reproduction, hormones, genetics, and behavior. These data come from individually marked-animals that are captured, measured and released on an annual basis; the marked animals are systematically recensused in order to provide information on survival, growth, inter-group movements, and reproduction. As of September 2015, we have captured, measured, marked and released over 900 animals.
CURRENT RESEARCH AREAS:

Behavioral Ecology and Sexual Selection. I am interested in elucidating the behavioral and morphological factors that create variation in male reproductive success in primates. Substantively, I have found that sifaka males engage in a substantial amount of extra-group reproduction, which lowers the opportunity for sexual selection. Further, an analysis of paternity in conjunction with morphological data has shown that stabilizing selection plays a key role in male-male competition. On-going work includes combining paternity information with observations on paternal care and male hormone profiles (in collaboration with Drs. Diane Brockman and Pat Whitten, UNC-Charlotte and Emory University, respectively). More recently, I’ve become interested in the various models proposed to explain primate sociality and the degree to which they balance generality and specificity.

Demography, Conservation, and Life History Evolution. I am a member of a long-term, community-based conservation program in southwest Madagascar. Our research team includes American, British, and Malagasy scientists who engage in both applied and theoretical research projects in and around our study site, Beza Mahafaly Special Reserve. On the theoretical side, I have become interested in demographic modeling, and in particular, the use of matrix population models. We have just completed an extensive demographic analysis of sifaka population dynamics using information on females. I also use genetic and statistical techniques to evaluate the conservation status of wild primates.

Population and Quantitative Genetics. I am interested in how behavioral patterns influence the genetic structure of primate populations and vice versa. My substantive research in this area involves looking at how patterns of mating and dispersal shape genetic variation within and among social groups in terms of their influence on genetic structure and effective population size. I am also interested in quantitative genetics, particularly as it concerns the estimation of selection, heritability, additive genetic correlations, and maternal/cohort effects. Additional “non-sifaka” projects include an on-going study of ring-tail lemur population genetics and paternity and an on-going comparative project on the genetics of lemur color-vision.

Primate Locomotion and Evolutionary Morphology. I maintain an interest in the study of primate movement in the wild. In particular, I am interested in how young sifaka develop locomotor coordination. Sifaka move about their habitat by leaping between vertical tree trunks—this behavior entails a fair amount of coordination and poses a challenge for newly locomotor-independent sifaka. I am studying this problem from various angles including behavioral sampling of movement in the wild, analysis of growth patterns of limbs, and population genetic methods, such as calculating the heritability and strength of selection that acts on hand, feet, and other body parts that contribute to movement. I have also studied locomotion and prehensile tail use in South American primates.

Lawler RR, Wunderlich RE, Rolian C (in prep.) Ontogenetic and functional covariance structure of postcranial traits in Verreaux’s sifaka.
FUNDING:

The above research has been funded by various sources, most notably by four National Science Foundation Grants (NSF) at the graduate, postdoctoral, and professional levels: a NSF Dissertation Improvement Grant funded by the Population Biology Cluster (DEB 9902146); a NSF postdoctoral fellowship in bioinformatics funded by the Division of Biological Infrastructure (DBI 0305074); a NSF Research Starter Grant in population dynamics funded by the Population Biology Cluster (DEB 0531988); and a NSF full proposal funded by the Division of Behavioral Sciences (BCS 0820298).

FUTURE PROJECTS:

I am planning a demographic and genetic study of senescence in wild sifaka. Additionally, I will continue to study the demography of wild sifaka in order to address issues and questions pertaining to their conservation and behavioral biology. I also seek to understand the genetic basis of life history traits using statistical approaches including survival models and quantitative genetics. And I also maintain an interest in the ontogeny of primate locomotion as well as statistical issues in the analysis of locomotion. All of these areas, noted above, will turn into publications at some point. Further down the line, I am planning a comprehensive textbook on primate behavioral ecology.